1. 操秀英. 我国首个百万吨级碳捕集利用与封存项目建成. http://stdaily.com/index/kejixinwen/202201/c0fd940b482f472cbb3d31d7ab062b47.shtml (2022).
2. 齐鲁石化公司. 关于对齐鲁分公司二氧化碳回收利用项目试生产公示. http://qlsh.sinopec.com/qlsh/news/com_notice/20220413/news_20220413_571773855884.shtml (2022).
3. Ritchie, H., Roser, M. & Rosado, P. CO₂ and Greenhouse Gas Emissions. Our World in Data https://ourworldindata.org/co2/country/china (2020).
4. Peplow, M. The race to upcycle CO2 into fuels, concrete and more. Nature 603, 780–783 (2022).
5. Lux Research. The Emergence of a Carbon Economy. https://www.luxresearchinc.com/the-emergence-of-a-carbon-economy-executive-summary (2021).
6. IPCC. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. (2018).
7. IRENA. Global Renewables Outlook: Energy transformation 2050. https://www.irena.org/publications/2020/Apr/Global-Renewables-Outlook-2020 (2020).
8. IEA. Energy Technology Perspectives 2020 – Analysis. https://www.iea.org/reports/energy-technology-perspectives-2020 (2020).
9. IEA. Net Zero by 2050: a Roadmap for the Global Energy Sector. https://www.iea.org/reports/net-zero-by-2050 (2021).
10. 蔡博峰,李琦,张贤 等. 中国二氧化碳捕集利用与封存 (CCUS) 年度报告 (2021)——中国 CCUS 路径研究. (2021).
11. 国家发展和改革委员会. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202103/t20210323_1270124.html?code=&state=123 (2021).
12. Mac Dowell, N., Fennell, P. S., Shah, N. & Maitland, G. C. The role of CO2 capture and utilization in mitigating climate change. Nature Clim Change 7, 243–249 (2017).
13. de Kleijne, K. et al. Limits to Paris compatibility of CO2 capture and utilization. One Earth 5, 168–185 (2022).
14. Zhou, Y. et al. Self-assembled iron-containing mordenite monolith for carbon dioxide sieving. Science 373, 315–320 (2021).
15. Yu, C. et al. Selective capture of carbon dioxide from humid gases over a wide temperature range using a robust metal–organic framework. Chemical Engineering Journal 405, 126937 (2021).
16. IEA. Reuse: carbon reuse. https://www.cceguide.org/wp-content/uploads/2020/08/04-IEA-Reuse.pdf.
17. Cai, T. et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science 373, 1523–1527 (2021).
18. Zheng, T. et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nat Catal 5, 388–396 (2022).
19. Chen, C. et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 12, 717–724 (2020).
20. Global CCS Institute. Technology Readiness and Costs of CCS. 50 (2021).
21. IEA. Direct Air Capture 2022. https://www.iea.org/reports/direct-air-capture-2022 (2022).
22. Ravikumar, D. et al. Carbon dioxide utilization in concrete curing or mixing might not produce a net climate benefit. Nat Commun 12, 855 (2021).
23. Madhu, K., Pauliuk, S., Dhathri, S. & Creutzig, F. Understanding environmental trade-offs and resource demand of direct air capture technologies through comparative life-cycle assessment. Nat Energy 6, 1035–1044 (2021).
24. Cruz, T. T. da et al. Life cycle assessment of carbon capture and storage/utilization: From current state to future research directions and opportunities. International Journal of Greenhouse Gas Control 108, 103309 (2021).